Skeleton Test Study Guide

Skeletal Organization
- Axial Skeleton
 - Head
 - Neck
 - Trunk
- Appendicular Skeleton (PULP)
 - Pectoral girdle
 - Upper limbs
 - Lower limbs
 - Pelvic girdle

Function of Skeletal System
1. Support
2. Protection
3. Body Movement - place of attachment for muscles
4. Hematopoiesis (creates blood)
5. Inorganic Salt Storage - Ca, P, Mg, Na, & K
6. Energy Storage

Bone Composition
- Cells - 35%
 - **osteoprogenitor cells** - undergo mitosis and become osteoblasts
 - **osteoblasts** - form bone matrix by secreting collagen
 - **osteocytes** - mature bone cells
 - **osteoclasts** - destroy bone matrix; important for growth, maintenance, and repair
- Inorganic Salts - 65%
 - primarily **Calcium Phosphate**

<table>
<thead>
<tr>
<th>Compact VS. Spongy</th>
<th>Pictures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact bone</td>
<td></td>
</tr>
<tr>
<td>Yellow marrow in medullary cavity</td>
<td></td>
</tr>
<tr>
<td>Remnant of epiphyseal plate</td>
<td></td>
</tr>
<tr>
<td>Spongy bone</td>
<td></td>
</tr>
<tr>
<td>Compact bone</td>
<td></td>
</tr>
</tbody>
</table>
Compact VS. Spongy

<table>
<thead>
<tr>
<th>Structure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid, dense, and smooth</td>
<td>Trabeculae - needle-like pieces of bone</td>
</tr>
<tr>
<td>Haversian System (structural unit)</td>
<td>lots of open spaces between trabeculae</td>
</tr>
<tr>
<td>o elongated cylinders cemented together (osteons)</td>
<td>nourished by diffusion from nearby Haversian Canals</td>
</tr>
<tr>
<td>o composed of . . .</td>
<td></td>
</tr>
<tr>
<td>■ osteocytes - spider shaped cells which lie in lacunae; produce matrix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● matrix of collagen + calcium salts that form concentric lamellae (layers) around a canal</td>
</tr>
<tr>
<td>■ Haversian canal - center canal that contains blood vessels and nerves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Canaliculi - connect lacunae of osteocytes</td>
</tr>
<tr>
<td></td>
<td>● Volkmann's canals</td>
</tr>
<tr>
<td></td>
<td>o connect blood + nerve supply of adjacent haversian systems</td>
</tr>
<tr>
<td></td>
<td>o perpendicular to Haversian Canals</td>
</tr>
</tbody>
</table>

Bone Classification

- Classified by shape
 - a. Long bones
 - b. Short Bones
 - c. Flat Bones
d. Irregular Bones
e. Sesamoid (round) Bones
f. Wormian Bones (in skull)

Parts of a Long Bone

- **Diaphysis**
 - central medullary cavity → **yellow marrow** (fat storage)
 - collar of compact bone surrounds medullary cavity
 - supportive function

- **Epiphysis**
 - spongy bone surrounded by thin layer of compact bone
 - **red marrow** (hematopoiesis)
 - **Epiphyseal line** = remnant of growth plate
 - junction between diaphysis and epiphyses
 - point where growth occurred

- **Periosteum**
 - fibrous covering to diaphysis
 - richly supplied with blood
 - **Nutrient Foramen** = passage way in bone for nutrient artery
 - **Osteogenic layer** = osteoblast + osteoclasts
 - site for muscle to attach (tendons)/ protection + nourishment for bone

- **Endosteum**
 - inner lining of medullary cavity
- layer of osteoblast + osteoclasts
- aids in bone remodeling

- **Articular Cartilage**
 - hyaline cartilage on epiphyses
 - shock absorber + forms synovial

Bone Development

- **Embryonic Skeleton**
 - hyaline cartilage
 - begins ossification (solidification) at 6-7 weeks → continuous through adulthood
 - 2 patterns

Bone Growth

1. **Longitudinal**
 - During infancy and childhood → length by growth in epiphyseal plates
2. **Appositional**
 - growth in width
Growth at the Epiphyseal Plate

1. 1st layer of cells
 ➢ closest to the end of epiphysis
 ➢ resting cells
 ➢ anchors epiphyseal plate to epiphysis

2. 2nd layer of cells
 ➢ many rows of young cells
 ➢ undergoing mitosis

3. 3rd layer of cells
 ➢ older cells
 ➢ left behind when new cells appear
 ➢ enlarging and becoming calcified

4. 4th layer of cells
 ➢ thin
 ➢ dead cells
 ➢ calcified extracellular matrix

Homeostasis of Bone Tissue

- **Reabsorption** - action by osteoclasts + parathyroid hormone
 - expands medullary cavity

- **Deposition** - action by osteoblasts + calcitonin
 - adding of new bone to epiphysis
Life Span Changes
- decrease in height around 30 years
- calcium level falls
- bones become brittle
- osteoclasts outnumber osteoblasts (more breaking down than creating)
- spongy bone weakens before compact bone
- bone loss rapid in menopausal women
- hip fractures common
- vertebral compression fractures common

Factors Affecting Bone Development, Growth, and Repair
- Deficiency of Vitamin A
 - retards bone development
- Deficiency of Vitamin C
 - results in fragile bones
- Deficiency of Vitamin D
 - Rickets + Osteomalacia
- Insufficient Thyroid Hormone
 - delays bone growth
- Sex Hormones
 - promote bone formation; stimulate ossification of epiphyseal plates
- Physical Stress
 - stimulates bone growth
- insufficient growth hormone
 - Dwarfism
- excessive growth hormone
 - Gigantism + Acromegaly

Other Abnormalities
- Cleft Palate
- Osteoporosis
 - loss of calcified bone; weak bones
- Polydactyly
 - extra digits
- Scoliosis (too curvy side to side) + lordosis (really bent lumbar) + kyphosis (hump back)
Fractures

- Green stick, fissured, comminuted, transverse, oblique, and spiral

Clinical Application + green boxes

1. **Sickle cell disease**
 - inherited
 - severe bone pain
 - low oxygen conditions = abnormal hemoglobin which can block bone arteries in patients

2. child’s long bones are still growing if a radiograph shows epiphyseal plates
 - if damaged, could cause ceased growing or produce uneven growing
 - epiphyseal plates may be altered surgically to even out growing
 - **bone cancer** = abnormal osteoclasts destroying bone tissue while cancer of prostate gland has opposite effect
 - if prostate cancer spreads to bone, it can stimulate osteoblasts
 - this promotes formation of new bone on surfaces of bony trabeculae (needle-like spongy bone pieces)

3. natural substances can be used to treat bone tissue
 - **Dwarfism** = growth hormone
 - once donated but is now produced by recombinant DNA technology (bacteria that is given the human gene and produces the protein)
 - **Bone Morphogenetic Protein (BMP)** also used in recombinant DNA technology
used spinal fusion procedure was once done taking bone chips from the patient's pelvis (painful)
 ● replaced with a new protein that was less painful and did not cause growth in untargeted regions; also useful in Cleft Palate

4. Astronauts experience 1% bone mass loss per month in space
 ● osteoblasts activity decreases; osteoclast activity increase
 ○ greater loss in spongy bone
 ○ researchers predict 50% bone loss could occur to a several year long period such as a mission to mars

5.

6. **Biomineralization** - the combining of minerals with organic molecules (like bones)
 ● Ancient Mayan skulls have teeth composed of nacre
 ○ used today for filling in lost bone in upper jaw because our body does not reject but it even promotes bone growth

7. **Osteoporosis** - skeletal system loses bone mass and mineral content as we age so old people are more likely to break bones than younger people
 ● hereditary and environmental (alcoholism)
 ● high risk in menopause
 ● Dual-energy X-ray absorptiometry is recommended for people over the age of 65 to test for bone mineral density
can be treated

8. **Mastoiditis** - mastoid process becomes infected
 - microorganisms can get into air cells in ear; can infect brain

9. **Cleft Palate** - fusion of palatine process of maxillae is incomplete at birth
 - trouble with breastfeeding
 - artificial plate inserted within the mouth/ special type of nipple on bottles for resolution

10. in some adults, the frontal suture remains open and never closes in the 6th year (line down forehead)

11. **Spondylosis** - fracture in the inferior and superior articulating process
 - results from gymnasts, pole vaulters, high jumpers, etc hyperextending and rotating vertebrae

12. **Spondylolisthesis** - occurs when the vertebrae slips out of place
 - most common is the 5th lumbar vertebrae

13. **Sternal Angle** - the line of union between the sternum and the manubrium; projects slightly forward

14. **Sternal Puncture** - sample of red blood marrow in the spongy bone of sternum (easy to reach)

15. **Cleidocranial Dysplasia** - shoulders bend and meet over the chest
 - scapulae are stunted/missing
 - **Arnold head** - fontanels atop the head never closed after arnold was kicked by a horse (malfuctioning gene that instructs certain cells to specialize as bone

16. sudden activity of an otherwise inactive forearm can cause fractures or breakage
 - you're supposed to work up to high activity over time

17. **polydactyly** - hereditary + common in amish people

18. **hip pointer** - common injury in contact sports; bruising the soft tissue and bone associated with the anterior iliac spine
 - protective padding prevents this

19. **Patellar Dislocation** - patella slips to one side because of unnatural movement or forceful blow
 - strengthening knee muscles and wearing protective padding can prevent this

20. **Osgood-Schlatter disease** - painful swelling of bony projection of tibia
 - overusing thigh muscles to straighten lower limbs irritates area

21. **Clubfoot** - common birth defect in infant’s feet
 - casts on both feet, surgery, or special shoes fixes the problem